DOE fronts $80m for CO2-reduction pilot project in Texas

The U.S. Department of Energy said Oct. 17 that it is awarding up to $80 million for a six-year project to design, build, and operate a 10-MWe (megawatts electrical) supercritical carbon dioxide (sCO2) pilot plant test facility in San Antonio, Texas.

The project will be managed by a team led by the Gas Technology Institute (GTI), Southwest Research Institute (SwRI) and General Electric Global Research (GE-GR).

The new facility will support the future commercialization of sCO2 Brayton cycle energy conversion systems by testing and demonstrating the potential energy efficiency and cost benefits of this technology. Currently, the average efficiency of the U.S. fleet of steam Rankine cycle power plants is in the lower 30% range. This new facility has the potential to demonstrate greater than 50% cycle efficiency. If successfully developed, the supercritical CO2 power cycles could provide significant efficiency gains in geothermal, coal, nuclear and solar thermal power production.

“Supercritical CO2 power systems have the potential to improve the efficiency and reduce the size of future power plants significantly. Smaller size and increased efficiency can lead to lower costs and fewer greenhouse gas emissions,” said Franklin Orr, DOE’s Under Secretary for Science and Energy. “The selection of this test facility will help to further our nation’s climate goals by bringing us one step closer to deploying this exciting technology on a commercial scale.”

Currently, no commercially-feasible sCO2 facility exists for high temperature and high-efficiency system testing. This 10-MWe test facility will serve as an opportunity for industry and government to work together to develop and mature the sCO2 power cycles at the pilot-scale, bringing it one step closer to commercialization.

Supercritical CO2 is carbon dioxide that is above its critical temperature and pressure so that it is in a fluid state, enabling a power plant to generate the same amount of electricity from less fuel when compared to traditional steam and water (Rankine cycle) systems commonly used today. This, in turn, decreases CO2 emissions and operating costs. Furthermore, because sCO2 has a high-fluid density relative to steam, sCO2 power plants may be fitted with compact turbomachinery, which would help to reduce capital costs.  

The information generated through this project has the potential to inform scale-ups for larger scale demonstrations in the future. While sCO2 technology has been proven in a lab setting, DOE said this pilot project will provide important data on potential challenges of operating it on a larger scale. It will also provide an opportunity to atest the performance of the system’s components when operated on a continuous and fully integrated basis.

The project is part of DOE’s sCO2 crosscutting initiative that includes the Offices of Fossil Energy, Energy Efficiency and Renewable Energy, and Nuclear Energy. This collaborative effort seeks to reduce the technical barriers and risks to commercializing the sCO2 power cycle, with a common goal of establishing a 10 MWe scale Supercritical Transformational Electric Power facility for evaluating the power cycle and component performance over a range of operating conditions.

About Barry Cassell 20414 Articles
Barry Cassell is Chief Analyst for GenerationHub covering coal and emission controls issues, projects and policy. He has covered the coal and power generation industry for more than 24 years, beginning in November 2011 at GenerationHub and prior to that as editor of SNL Energy’s Coal Report. He was formerly with Coal Outlook for 15 years as the publication’s editor and contributing writer, and prior to that he was editor of Coal & Synfuels Technology and associate editor of The Energy Report. He has a bachelor’s degree from Central Michigan University.